Wind 101 Jerry Hudgins Department of Electrical Engineering University of Nebraska - Lincoln

Wind Turbines

- Horizontal Axis, HAWT (all large power turbines are this type)
 - Upwind
 - Downwind

- Vertical Axis, VAWT
 - Good for low wind and turbulent wind (near ground)
- Lift (more efficient that drag type)
- Drag

Sizes and Applications

Small (≤10 kW)

- Homes
- Farms
- Remote Application

Intermediate (10-250 kW)

- Village Power
- Hybrid Systems
- Distributed Power

Large (660 kW - 2+MW)

- Central Station Wind Farms
- Distributed Power
- Community Wind

Wind Turbines

- Horizontal Axis, HAWT (all large power turbines are this type)
 - Upwind

World's Largest Turbines

- Enercon E-126
 - Rotor diameter of 126 m
 (413 ft)
 - Rated at 6 MW, but produces
 7+ MW
- Clipper (off-shore)
 - Rotor diameter of 150 m (492 ft)
 - Hub Height is 328 ft
 - Rated at 7.5 MW

- Clipper 2.5 MW
 - Hub height 80 m (262 ft)
 - Rotor diameter 99 m
 (295 ft)
 - 4 PM generators in one nacelle

• 3.28 ft/m

- Vestas 1.65 MW turbines at Ainsworth wind farm
 - Class 5 wind site (avg. wind speed is 19.5 mph)
 - 36 turbines in farm
 - Hub height is 230 feet
 - Rotor diameter is 269 feet
 - Project cost was about \$1,355/kW

Small Wind Turbine

- Bergey Excel 10 kW
 - Hub height 18-43 m (59-140 ft)
 - Rotor diameter 7 m (23 ft)

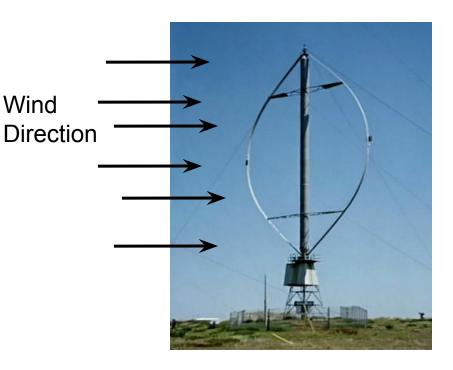
- 2.4 kW Skystream
 Southwest Wind Power
 - Hub height is 45-60 ft.
 - Rotor diameter is 12 ft.
 - Installation cost is about
 \$7 to \$8.50 per Watt

VAWT

• 30 m Darrieus

• Helical Twist

VAWT are designed to


operate near the ground where the wind power is lower

and

produce drag on the trailing blades as they rotate through the wind.

Turbine Types

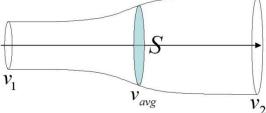
- Vertical Axis, VAWT
 - Good for low wind and turbulent wind (near ground)

Vertical axis turbines

PacWind Seahawk, 500 W Drag type

PacWind Delta I, 2 kW
 Lift type

- Power available in the wind is proportional to the
 - Air Density, ρ

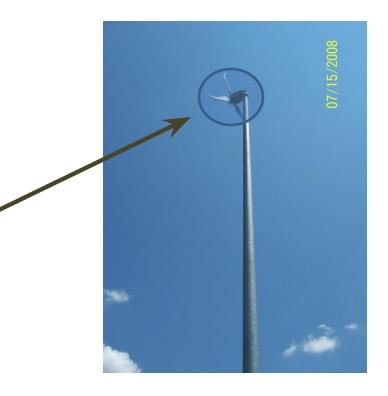


- Power available in the wind is proportional to the
 - Air Density, ρ
 - Swept Area of the Rotor, A

- Power available in the wind is proportional to the
 - Air Density, ρ
 - Swept Area of the Rotor, A

-Cube of the Air Velocity, $(v \times v \times v)$ $(P_w = \frac{1}{2} \rho A v^3)$

- Power available in the wind is proportional to the
 - Air Density, ρ
 - Swept Area of the Rotor, A


-Cube of the Air Velocity, $(v \times v \times v)$ $(P_w = \frac{1}{2} \rho A v^3)$

• Betz Limit – theoretical maximum power that can be extracted from the wind is 0.59 or 59%

Swept Area

- Swept area is the area that the blades of a wind turbine intersect with the wind. NOTE: Swept Area is NOT the surface area of the blades!
 - A HAWT with one or more blades has them moving in a circular motion so the swept area, A, is a circle with a radius, R, equal to the blade length, L, plus the rotor hub radius. Since the blades are typically much longer than the hub, the blade length is often used to estimate the swept area radius.
 - Therefore, the swept area for this type of blade arrangement is
 A = πR² ≈ πL²

Physics Continued

Tip Speed Ratio, λ, is the ratio of the blade-tip speed (linear velocity) to wind speed.

 $\lambda = \Omega R / v$

- \varOmega is the angular velocity of the rotor
- *R* is the radius of the rotor
- *v* is the wind velocity
- The Power Coefficient, C_p, is a maximum (approaches Betz Limit) when the Tip Speed Ratio is in the range of 7.5 to 10.

${\it \Omega}~$ is the angular velocity of the rotor tip in units of radians/second

Note: A 50 m blade moving at 15 rpm has its tip moving at about 175 mph!

Physics Continued

- In Drag-type turbines, Power transfer from the wind maximizes at about 8.1 %
 - Compare to the Betz Limit of 59% for Lift devices

Wind and Height

- Generally, the wind velocity is on average a larger value as you move above the ground.
 - This should be intuitive as the ground interferes less with the wind so the air is undisturbed and free to flow better as we get higher.
 - Therefore, placing a turbine as high as possible above the ground will provide better performance on average.



Wind and Height

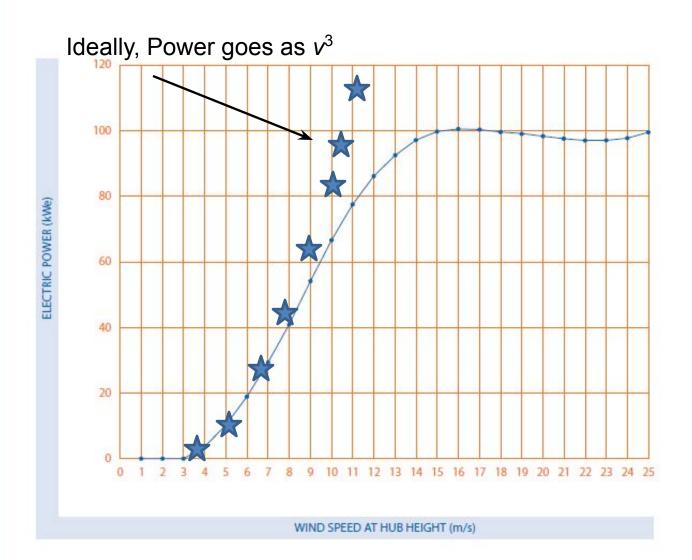
- The variation of wind velocity with respect to height is termed *Shear*.
- Empirical* relationships for the wind shear are typically made using ratios of heights and associated velocities.

* Empirical means an equation based on measurements, not an equation derived from fundamental physics.

Annual average shear exponents can vary from 1/7 to 0.25, causing considerable uncertainty in vertical extrapolations of wind resource.

Wind Turbine Average Output Power

- One quick measure of turbine performance is to assume an ideal turbine where the power transferred from the wind is 0.591 (Betz Limit),
- an efficiency of η = 1,
- and a idealized distribution of wind speeds (Rayleigh) .


$$P_{Turbineavg} = \rho (2D/3)^2 (v_{avg})^3$$

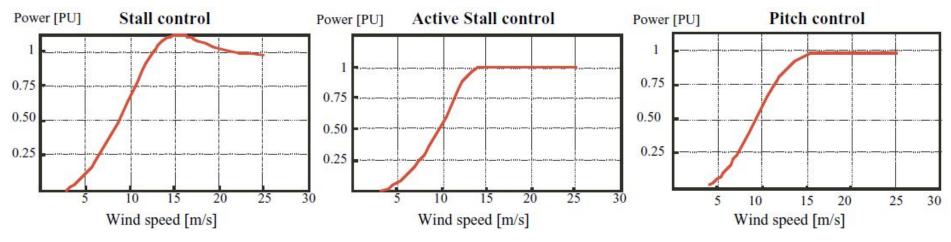
 ρ is air density, D is rotor diameter, v_{avg} is average wind
speed

WIND SPEED (m/s)	POWER (kWe)
1	0
2	0
3	0
4	3.7
5	10.5
6	19.0
7	29.4
8	41.0
9	54.3
10	66.8
11	77.7
12	86.4
13	92.8
14	97.3
15	100.0
16	100.8
17	100.6
18	99.8
19	99.4
20	98.6
21	97.8
22	97.3
23	97.3
24	98.0
25	99.7

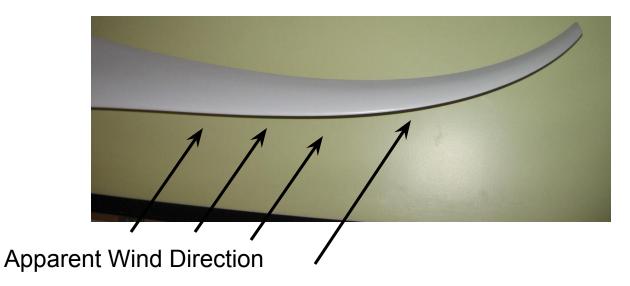
Why does the Power Curve Peak and then Lay Over?

WIND SPEED (m/s)	POWER (kWe)
1	0
2	0
3	0
4	3.7
5	10.5
6	19.0
7	29.4
8	41.0
9	54.3
10	66.8
11	77.7
12	86.4
13	92.8
14	97.3
15	100.0
16	100.8
17	100.6
18	99.8
19	99.4
20	98.6
21	97.8
22	97.3
23	97.3
24	98.0
25	99.7

Must Control Power Coupled into Turbine or this Happens



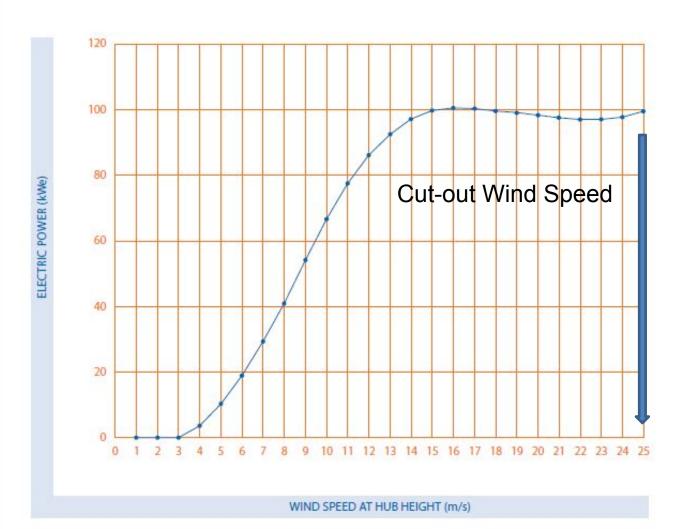
Blade positioning is actively or passively controlled to limit the power output from the turbine.


- Power curve can be made smooth by active control (active stall or pitch for large turbines)
- Passive Stall control has an overshoot depending on blade design (small turbines)

Pitch and Yaw

• Pitch refers to the relative angle of the turbine blades to the incoming wind direction.

Yaw is the direction of rotation of the turbine nacelle and rotor assembly as it pivots around the tower to move into or out of the wind.



WIND SPEED (m/s)	POWER (kWe)
1	0
2	0
3	0
4	3.7
5	10.5
6	19.0
7	29.4
8	41.0
9	54.3
10	66.8
11	77.7
12	86.4
13	92.8
14	97.3
15	100.0
16	100.8
17	100.6
18	99.8
19	99.4
20	98.6
21	97.8
22	97.3
23	97.3
24	98.0
25	99.7

WIND SPEED (m/s)	POWER (kWe)
1	0
2	0
3	0
4	3.7
5	10.5
6	19.0
7	29.4
8	41.0
9	54.3
10	66.8
11	77.7
12	86.4
13	92.8
14	97.3
15	100.0
16	100.8
17	100.6
18	99.8
19	99.4
20	98.6
21	97.8
22	97.3
23	97.3
24	98.0
25	99.7

WIND SPEED (m/s)	POWER (kWe)
1	0
2	0
3	0
4	3.7
5	10.5
6	19.0
7	29.4
8	41.0
9	54.3
10	66.8
11	77.7
12	86.4
13	92.8
14	97.3
15	100.0
16	100.8
17	100.6
18	99.8
19	99.4
20	98.6
21	97.8
22	97.3
23	97.3
24	98.0
25	99.7

Northwind 100

GENERAL CONFIGURATION	DESCRIPTION	
Model	Northwind 100	
Design Class	IEC IIA (air density 1.225 kg/m ³ , average annual wind below 8.5 m/s, 50-yr peak gust below 59.5 m/s)	
Design Life	20 Years	
Hub Height	37 m (121 ft)	
Tower Type	Tubular steel monopole	
Orientation	Upwind	
Rotor Diameter	21 m (69 ft)	
Power Regulation	Variable Speed, Stall Control	
PERFORMANCE	DESCRIPTION (standard conditions: air density of 1.225 kg/m ³ , equivalent to 15°C (59°F) at sea level)	
Rated Electrical Power	100 kW, 3 Phase, 480 VAC, 60 Hz	
Rated Wind Speed	14.5 m/s (32.4 mph)	
Maximum Rotation Speed	59 rpm	
Cut-In Wind Speed	3.5 m/s (7.8 mph)	
Cut-Out Wind Speed	25 m/s (56 mph)	
Survival Wind Speed	59.5 m/s (133 mph)	
WEIGHT	DESCRIPTION	
Rotor (21-meter)	1,400 kg (3,100 lbs)	
Nacelle (standard)	5,800 kg (13,000 lbs)	
Tower (37-meter)	13,800 kg (30,000 lbs)	
DRIVE TRAIN	DESCRIPTION	
Gearbox Type	No Gearbox (Direct Drive)	
Generator Type	Permanent magnet, passively cooled	

Real Turbines with Measured Performance

PERFORMANCE GRAPH 2400 Southwest binned 20-sec average 2100 1800 1500 Watts 1200 NWTC 900 1-min averages 600 300 22.3 44.75 33.5 60 mph 0 11 5 10 15 20 25 m/s 0 Standardized Wind Speed

Technical Specifications

Model	Skystream 3.7	
Rated Capacity	1.8 kW rated 2.4 kW peak	
Weight	170 lbs. / 77 kg	
Rotor Diameter	12 feet / 3.72 meters	
Swept Area	115.7 ft²/ 10.87 m²	
Туре	Downwind rotor with stall regulation control	
Direction of Rotation	Clockwise looking upwind	
Blade Material	Fiberglass reinforced composite	
Number of Blades	3	
Rated Speed	50 - 325 rpm	
Tip Speed	66 - 213 f/s / 9.7 - 63 m/s	
Alternator	Slotless permanent magnet brushless	
Yaw Control	Passive	
Grid Feeding	Southwest Windpower inverter 120/240 VAC 50-60/Hz	
Braking System	Electronic stall regulation w/redundant relay switch control	
Cut-in Wind Speed	8 mph / 3.5 m/s	
Rated Wind Speed	20 mph / 9 m/s	
User Control	Wireless 2 way interface remote system	
Survival Wind Speed	140 mph / 63 m/s	
Warranty	5 Year Limited Warranty	

1. Based on a 12 mph (5.4 m/s) wind and utility energy cost of \$.09/kWh

2. Taller towers are available 3. 120V will be available in the 4th quarter of 2006

4. Assuming the Skystream 3.7 is producing more energy than the load is consuming

TECHNICAL DATA FOR V90-1.8 MV

Power regulation	pitch regulated with variable speed	Main dimensions	
		Blade	
Operating data		Length	44 m
Rated power	1,800 kW	Max chord	35m
Out-in wind speed	4 m/s	Weight	6,700 kg
Rated wind speed	12m/s	the gra	no no ng
Out-out wind speed	25 m/s	Nacelle	
Wind Class	IEC IIA	Height for transport	4 m
Operating temperature	standard range	Height installed	
	-20°C to 40°C	(Including CoolerTop)	5.4 m
	low temperature option	Length	10.4 m
	-30°C to 40°C	Width	3.4 m
		Weight	70 metric tonnes
Sound power		111.3.1	The former for some final
(10 m above ground, hub hei	aht 80 m	Hub	
standard air density 1,225 k	(Emva	Max clameter	33m
4 m/s	95.6 dB(A)	Max width	4 m
5 m/s	99.4 dB(A)	Longth	4.2 m
6 m/s	1023dB(A)	Wolght	18 matric tonnes
7 m/s	1031 dB(A)	3	
> Bm/s	103.5 dB(A)	Tower	
1. C. C. M. C.	11		
Rotor		80 m	
Rotor diameter	90 m	Weight	155 matrix tonnes
Swept area	6,362 m ²		
Nominal revolutions	14.5 rpm	95 m	
Operational interval	93-166 rpm	Weight	205 metric tonnes
Air brako	full blade feathering with	_	
	3 pitch cylinders		
Tower			
Туре	tubular steel tower	Power curve V90-1.8 MW	
Hub heights	B0 m and 95 m	2000	
		1 800	
Generator	et and a start have a start	1,000	1
Туре	6-pole asynchronous with	1,600	1
Alternative and an end of	variable speed 1.800 kW	1,400	1
Nominal output Operational data	60 Hz 690 V		
operationalidada	DO HIZ DOO V	1,400	
Gearbox		1,000	
1.12.21.21.01.02	Catana almatan daleal	8 800	
Type	3-stage planetary/helical		
		600	
		400-	

All specifications are for informational purposes and are subject to change without notice. Vestas does not make any representa-tions or extend any warranties, expressed or implied, as to the adequacy or accuracy of this information.

Noise reduced sound power modes are available.

5

10 15

Wind speed (mph)

20

25

200-0 T

0

•Measure the Wind Resource!

•Turbine Power Curve and Real Performance Data!

