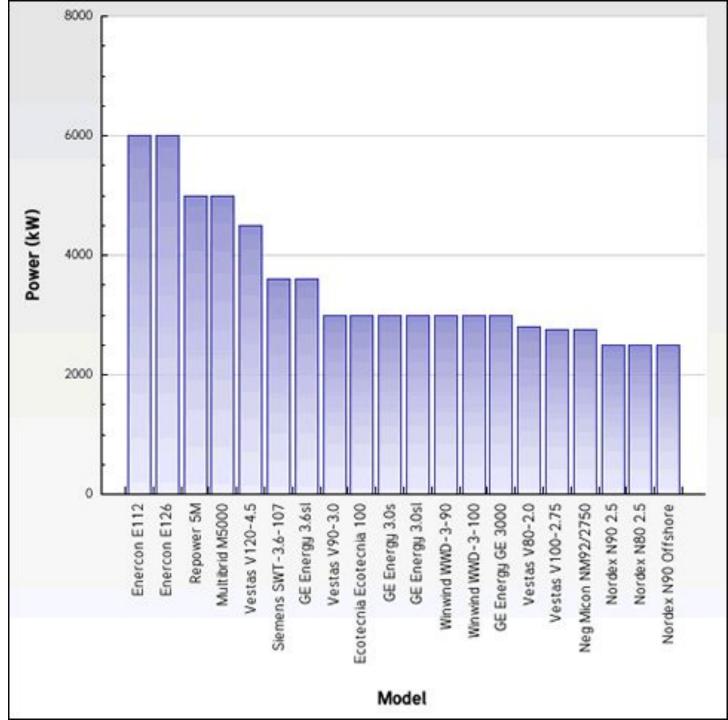
Wind 101 Jerry Hudgins Department of Electrical Engineering University of Nebraska - Lincoln

Wind Turbines

- Horizontal Axis, HAWT (all large power turbines are this type)
 - Upwind
 - Downwind
- Vertical Axis, VAWT
 - Good for low wind and turbulent wind (near ground)
- Lift (more efficient that drag type)
- Drag

HAWT



Largest Turbines (Rated Power)

World's Largest Turbines

- Enercon E-126
 - Rotor diameter of 126 m
 (413 ft)
 - Rated at 6 MW, but produces
 7+ MW
- Clipper (off-shore)
 - Rotor diameter of 150 m (492 ft)
 - Hub Height is 328 ft
 - Rated at 7.5 MW

- Clipper 2.5 MW
 - Hub height 80 m (262 ft)
 - Rotor diameter 99 m
 (295 ft)
 - 4 PM generators in one nacelle

• 3.28 ft/m

- Vestas 1.65 MW turbines at Ainsworth wind farm
 - Class 5 wind site (avg. wind speed is 19.5 mph)
 - 36 turbines in farm
 - Hub height is 230 feet
 - Rotor diameter is 269 feet
 - Project cost was about \$1,355/kW

- Bergey Excel 10 kW
 Hub height 18-43 m (59-140 ft)
 - Rotor diameter 7 m (23 ft)

- 1.8 kW Skystream
 Southwest Wind Power
 - Hub height is 45 feet
 - Rotor diameter is 12 feet
 - Project cost was about \$8,300/kW

VAWT

• 30 m Darrieus

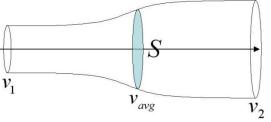
• Helical Twist

Vertical axis turbines

PacWind Seahawk, 500 W
 Drag type

PacWind Delta I, 2 kW
 Lift type

• Darius turbine, few 10's kW


Wind-Turbine Physics

• Power available in the wind

 $P_w = \frac{1}{2} \rho A v^3$ air density, swept area of blades, air velocity

- Power Coefficient, $C_p = Rotor Power/Power in Wind$
- Betz Limit theoretical maximum power that can be extracted from the wind is $C_p = 16/27 = 0.593$ or 59.3%

Physics Continued

• Tip Speed Ratio, λ , is the ratio of the blade-tip speed (linear velocity) to wind speed.

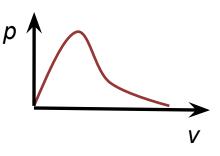
 $\lambda = \Omega R / v$

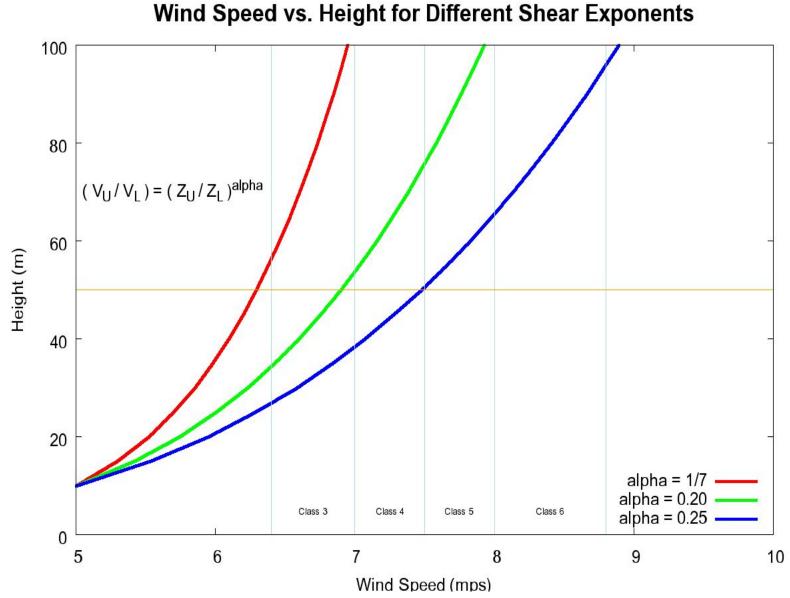
- \varOmega is the angular velocity of the rotor
- *R* is the radius of the rotor
- *v* is the wind velocity
- The Power Coefficient, C_p, is a maximum (approaches Betz Limit) when the Tip Speed Ratio is in the range of 7.5 to 10.

Physics Continued

- In Drag-type turbines, the wind velocity relative to the power producing surfaces is limited to the free-stream velocity. This results in a Power Coefficient, C_p, that maximizes at about 0.0815 (much lower than Betz Limit for Lift devices)
- In Lift-type turbines, the relative wind velocity is higher by a factor of up to 10 above the free-stream wind velocity.
 - When considering lift and drag effects, 3 blades is an optimum choice for the number (more blades moves the design closer to the Betz Limit, but is in diminishing return)

Wind Resources

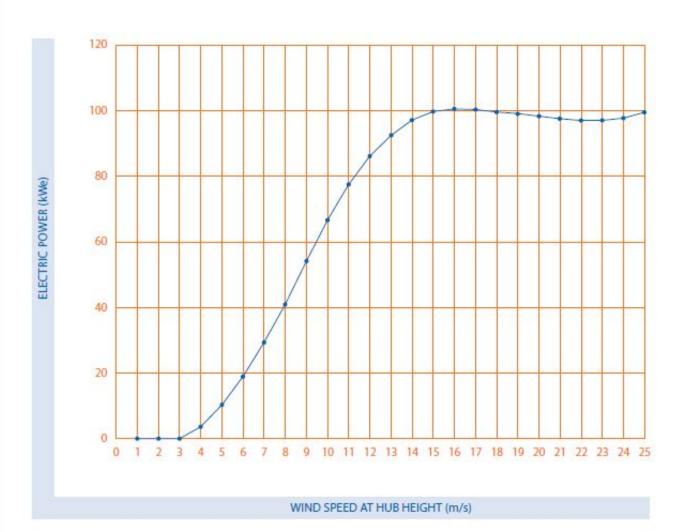

- Probability Distributions
 - Rayleigh
 - Weibull
- Probability of wind speed occurring between speeds of v_a and v_b is the sum (integral) of p(v)wrt velocity, over the range from v_a to v_b .



Wind Resources

- Probability Distributions, p(v)
 - Rayleigh
 - Only need to know mean wind speed, v_{mean}
 - Weibull
 - Need to know 2 parameters, shape factor k, and scale factor c
 - Special case for Weibull Probability Distribution is for k = 2 (Weibull becomes a Rayleigh Distribution)

Annual average shear exponents can vary from 1/7 to 0.25, causing considerable uncertainty in vertical extrapolations of wind resource.


Wind Turbine Output Power

- The average output power, *P*_{*Turbineavg*}, from the turbine is the sum (integral) of the product of the turbine's power curve, $P_{pwrcurve}(v)$, and the wind speed probability density function, p(v).
- One quick measure of turbine performance is to assume an ideal turbine where $C_p = 16/27$ (Betz Limit) and an efficiency, $\eta = 1$, and a Rayleigh distribution of wind speeds.
 - Calculation of $P_{Turbineavg}$ gives the 1-2-3 equation: $P_{Turbineavg} = \rho (2D/3)^2 (v_{avg})^3$

 $\succ \rho$ is air density, D is rotor diameter, v_{ava} is average wind speed

POWER CURVE: 21-METER ROTOR Standard Density (1.225 kg/m^3)

WIND SPEED (m/s)	POWER (kWe)
1	0
2	0
3	0
4	3.7
5	10.5
6	19.0
7	29.4
8	41.0
9	54.3
10	66.8
11	77.7
12	86.4
13	92.8
14	97.3
15	100.0
16	100.8
17	100.6
18	99.8
19	99.4
20	98.6
21	97.8
22	97.3
23	97.3
24	98.0
25	99.7

Northwind 100

GENERAL CONFIGURATION	DESCRIPTION	
Model	Northwind 100	
Design Class	IEC IIA (air density 1.225 kg/m ³ , average annual wind below 8.5 m/s, 50-yr peak gust below 59.5 m/s)	
Design Life	20 Years	
Hub Height	37 m (121 ft)	
Tower Type	Tubular steel monopole	
Orientation	Upwind	
Rotor Diameter	21 m (69 ft)	
Power Regulation	Variable Speed, Stall Control	
PERFORMANCE	DESCRIPTION (standard conditions: air density of 1.225 kg/m ³ , equivalent to 15°C (59°F) at sea level)	
Rated Electrical Power	100 kW, 3 Phase, 480 VAC, 60 Hz	
Rated Wind Speed	14.5 m/s (32.4 mph)	
Maximum Rotation Speed	59 rpm	
Cut-In Wind Speed	3.5 m/s (7.8 mph)	
Cut-Out Wind Speed	25 m/s (56 mph)	
Survival Wind Speed	59.5 m/s (133 mph)	
WEIGHT	DESCRIPTION	
Rotor (21-meter)	1,400 kg (3,100 lbs)	
Nacelle (standard)	5,800 kg (13,000 lbs)	
Tower (37-meter)	13,800 kg (30,000 lbs)	
DRIVE TRAIN	DESCRIPTION	
Gearbox Type	No Gearbox (Direct Drive)	
Generator Type	Permanent magnet, passively cooled	

