UNL Renewable Energy Research Panel

Dr. Chris Cornelius, *College of Engineering* Stonie Cooper, *School of Natural Resources* Dr. Peter Dowben, *Nebraska Center for Materials & Nanoscience*

Moderator: Joe Francis, Nebraska Department of Environment & Energy

Submit Questions at Slido.com - Code #M464

Storing Renewable Energy for Nebraska and Beyond using Vanadium Flow Batteries

Composition

Chris J. Cornelius University of Nebraska University of Nebraska ccornelius2@unl.edu

World's Top Ten Challenges Sustainable Research

Richard Errett Smalley 1996 Nobel Prize Fullerenes "Buckyball"

World:7.63 Billion (2018) China: 1.38 (18.4%) India: 1.30 (17.4%) US: 328 Million (4.4%)

- ENERGY
 WATER
 FOOD
 ENVIRONMENT
- 5. POVERTY
- 6. WAR (Terrorism)
- 7. DISEASE
- 8. EDUCATION
 9. DEMOCRACY
 10. POPULATION

2020: 8.7B

Energy

- Supply & Demand
- Environment
- Sustainability

Water

- Supply & Demand
- Environment
- Sustainability

Motivation

Materials and Sustainable Research

Small **Solution Diffusion** Large • Separations (gas, liquid, ions) channel channel P = DS• Batteries (ions - redox) • Fuel Cells (ion, gas, liquid) Coatings (barrier, biofouling) Drug Delivery (molecule) **Biology** (bioglass) Composition $E_D = \frac{I\rho S^2}{4} \left(\frac{DH_v - RT}{V} \right)$ Physical Properties Processina Transport Sata, T. J. Memb. Sci. 2000, 167, 1-31. Morphology Fan Y., Zhang M., Moore R.B., and Cornelius* C.J., J. Memb.. Sci., 2014, 464, 179-187. PEMFC **Flow-battery**

•

•

٠

Gas Separation

Desalination

Energy Storage Technology Summary and Pumped-Storage Hydropower (PSH)

Table 2.1. Worldwide deployment by technology type, 2018.

Technology	MW Deployed
Sodium sulfur	189
Lithium-ion	1,629
Lead acid	75
Sodium metal halide	19
Flow battery	72
PSH	169,557
CAES	407
Flywheels	931
Electrochemical capacitor	49
Total	172,928

Energy Storage Technology Summary and Pumped-Storage Hydropower (PSH)

Federal energy regulatory commission map of PSH projects that have received licenses as of October 2018.

Туре	Technology	Description	Typical Power Range	Typical Energy Range
Electrochemical Energy Storage	Sodium- sulfur battery	A molten-salt battery made up of sodium (Na) and sulfur (S) that operates at high temperature ranges and is primarily suitable for >4-hour duration applications.	Several kW to few MW	100 kWh or higher
	Li-ion battery	A battery based on charge and discharge reactions from a lithiated metal oxide cathode and a graphite anode. This battery technology is used in a wide variety of applications.	1 kW to 100 MW	<200 MWh
	Lead-acid battery	A battery made up of lead dioxide (PbO ₂) for the positive electrode and a spongy lead (Pb) negative electrode. Vented and valve-regulated batteries make up two subtypes of this technology.	Up to a few MW	<10 MWh
	Sodium metal halide battery	A molten battery made up of nickel (Ni), sodium chloride (NaCl), and sodium (Na) which is kept at a temperature between 270°C and 350°C. Batteries using other materials are being developed to decrease cost and operation temperature.	Several MW	4 kWh – several MWh
	Zinc-hybrid cathode battery	A high-energy density battery storage technology that uses inexpensive and widely available materials. Zinc-hybrid cathode batteries use non-flammable, near-neutral pH aqueous electrolytes that are non-dendritic and do not absorb CO ₂ .	250 kW subsystem repeat unit up to 2 MW	l MWh subsystem repeat unit up to 8 MWh
	Redox flow battery	A battery in which energy storage in the electrolyte tanks is separated from power generation in stacks. The stacks consist of positive and negative electrode compartments divided by a separator or an ion exchange membrane through which ions pass to complete the electrochemical reactions. Scalability due to modularity, ability to change energy and power independently, and long cycle and calendar life are attractive features of this technology.	Several kW – 30 MW	100 kW to 120 MWh

			Typical	Typical
T	Tubul	Description	Power	Energy
Type	I echnology	Description	Kange	Kange
Mechanical Energy Storage	Compressed air energy storage	This energy storage system is based on using electricity to compress air and store it in underground caverns. The air is released when needed and passed through a turbine to generate electricity.	Up to 500 MW	1 GWh to 20 GWh
	Flywheels	A storage system that relies on kinetic energy from rotor spinning through a "nearly frictionless enclosure" that can provide short- term power through inertia.	Up to 20 MW	Up to 5 MWh
	Pumped storage hydro	A technology that stores energy by pumping water from a lower to a higher reservoir and then releasing it back through the connection, passing through a turbine(s), which generates electricity. This technology is typically used for grid-scale storage.	Up to 3,600 MW	Up to 40 GWh
Electrical Energy Storage	Ultracapacitor	Ultracapacitors store energy at the double layer of each electrode separated by a dielectric and can discharge energy instantaneously. Due to lack of chemical reaction, the cycle life is orders of magnitude higher than battery cycle life.	250 kW to 2 MW	2.5 kWh to 20 kWh
Non-storage Generation	Combustion turbine	A gas turbine converts fuel such as natural gas to mechanical energy, which drives a generator to produce electricity.	10 kW – 100 MW	Not applicable

■ Capital Cost ■ BOP ■ PCS ■ C&C ■ O&M ◆ 2025 Total \$/kW

	Sod	ium-					Sodiur	n Metal			Re	dox	
1	Sulfur Battery		Li-Ion	Battery	Lead	l Acid	Ha	lide	Zinc-Hybr	rid Cathode	Flow 1	Battery	
Parameter	2018	2025	2018	2025	2018	2025	2018	2025	2018	2025	2018	2025	
Capital Cost – Energy	400-1,000	(300-675)	223-323	(156-203)	120-291	(102-247)	520-1,000	(364-630)	265-265	(179-199)	435-952	(326-643)	
Capacity (\$/kWh)	661	(465)	271	(189)	260	(220)	700	(482)	265	(192)	555	(393)	
Power Conversion	230-470	(184-329)	230-470	(184-329)	230-470	(184-329)	230-470	(184-329)	230-470	(184-329)	230-470	(184-329)	
System (PCS) (\$/kW)	350	(211)	288	(211)	350	(211)	350	(211)	350	(211)	350	(211)	
Balance of Plant (BOP)	80-120	(75-115)	80-120	(75-115)	80-120	(75-115)	80-120	(75-115)	80-120	(75-115)	80-120	(75-115)	
(\$/kW)	100	(95)	100	(95)	100	(95)	100	(95)	100	(95)	100	(95)	
Construction and	121-145	(115-138)	92-110	(87-105)	160-192	(152-182)	105-126	(100-119)	157-188	(149-179)	173-207	(164-197)	
Commissioning (\$/kWh)	133	(127)	101	(96)	176	(167)	115	(110)	173	(164)	190	(180)	
Total Project Cost	2,394-5,170	(1,919-3,696)	1,570-2,322	(1,231-1,676)	1,430-2,522	(1,275-2,160)	2,810-5,094	(2,115-3,440)	1,998-2,402	(1,571-1,956)	2,742-5,226	(2,219-3,804	
(\$/kW)	3,626	(2,674)	1,876	(1,446)	2,194	(1,854)	3,710	(2,674)	2,202	(1,730)	3,430	(2,598)	
Total Project Cost	599-1,293	(480-924)	393-581	(308-419)	358-631	(319-540)	703-1,274	(529-860)	500-601	(393-489)	686-1,307	(555-951)	
(\$/kWh)	90 7	(669)	469	(362)	549	(464)	928	(669)	551	(433)	858	(650)	
O&M Fixed (\$/kW-yr)	10	(8)	10	(8)	10	(8)	10	(8)	10	(8)	10	(8)	
O&M Variable (cents/kWh)	0.	.03	0.	0.03	0.03		0.03		0.03		0.03		
System Round-Trip	0.	.75	0.	.86	0	.72	0.	.83	0	.72	0.675	(0.7)	
Efficiency (RTE)													
Annual RTE	0.3	34%	0.5	50%	5.4	5.40%		0.35%		1.50%		0.40%	
Degradation Factor													
Response Time (limited by	17	sec	1	sec	1	sec	1 sec		1 sec		1 sec		
PCS)	L												
Cycles at 80% Depth of	4,(000	3,:	500	9	00	3,	500	3,	500	10,	,000	
Discharge													
Life (Years)	12	3.5	1	10	2.6	(3)	1	2.5	1	10	1	.5	
MRL	9	(10)	9	(10)	9	(10)	7	(9)	6	(8)	8	(9)	
TRL	8	(9)	8	(9)	8	(9)	6	(8)	5	(7)	7	(8)	
(a) An E/P ratio of 4 hours way	s used for ba	attery technol	ogies when o	calculating to	tal costs.								
MRL = manufacturing readiness level; O&M = operations and maintenance; TRL = technology readiness level.													

Table ES.1. Summary of compiled 2018 findings and 2025 predictions for cost and parameter ranges by technology type - BESS.^(a)

Parameter	Pumped Storage Hydropower ^(a)	Combustion Turbine	CAES ^(a)	Flywheel ^(b)	Ultracapacitor ^(c)
Capital Cost – Energy Capacity (\$/kW)	1,700-3,200	678-1,193	1,050-2,544	600-2,400	240-400
	2,638	940	1,669	2,400	400
Power Conversion System (PCS) (\$/kW)	Included in Capital Cost	N/A	N/A	Included in	350 (211)
				Capital Cost	
Balance of Plant (BOP) (\$/kW)					100 (95)
Construction and Commissioning (\$/kW)				480 ^(d)	80 ^(d)
Total Project Cost (\$/kW)	1,700-3,200	678-1,193	1,050-2,544	1,080-2,880	930 (835)
	2,638 (1)	940	1,669	2,880	
Total Project Cost (\$/kWh)	106-200		94-229	4,320-11,520	74,480 (66,640)
	165		105	11,520	
O&M Fixed (\$/kW-year)	15.9	13.0	16.7	5.6	1
O&M Variable (cents/kWh)	0.00025	1.05	0.21	0.03	0.03
System Round-Trip Efficiency (RTE)	0.80	0.328	0.52	0.86	0.92
Annual RTE Degradation Factor				0.14%	0.14%
Response Time	FS AS Ternary	From cold start:	3-10 min	0.25 sec	0.016 sec
	Spinning-in-air to full- 5-70 s 60 s 20-40 s	10 min			
	load generation	Spin ramp rate:			
	Shutdown to full 75-120 s 90 s 65-90 s	8.33%/min			
	generation Sciencing in air to full	Quick start ramp rate:			
	10ad 50-80 s 70 s 25-30 s	22.2%/min			
	Shutdown to full load 160-360 s 230 s 80-85 s				
	Full load to full generation 90-220 s 280 s 25-60 s				
	Full generation to full load 240-500 s 470 s 25-45 s ^(g)				
Cycles at 80% Depth of Discharge	15,000	Not Relevant	10,000	200,000	1 million
Life (Years)	>25	20	25	>20	16
MRL	9 (10)	10	8 (9)	8 (9)	9
TRL	8 (9)	9	7 (8)	7(8)	8
(a) $E/P = 16 h$	*	(d) 20 percent of capital c	ost		
(b) $E/P = 0.25 h$		AS = adjustable speed; FS	= fixed speed.		
(c) $E/P = 0.0125 h$					

x

Table ES.2. Summary of compiled 2018 findings and 2025 predictions for cost and parameter ranges by technology type - non-BESS.

Vanadium Redox Flow Battery Ionomer Design and Processing

Redox Flow Battery

- Rechargeable
- Modular Power and Capacity
- Unlimited Longevity

Challenges

- Membrane Stability
- Ion Cross-over
- Electrolyte Cost

DF

Redox Flow Battery Technology Capital Costs

Battery Capital	Mata	£
Cost (\$/KWB)	Notes	Source
\$490	5 kW, 20 kWh	RedT Energy Storage (2018)
\$444	400 Euros	Uhrig et al. (2016)
\$463		Noack et al. (2016)
\$730-\$1,200	Includes PCS cost and \$131/kWh performance guarantee	Aquino et al. (2017a)
\$542-952	After removing PCS and performance guarantee costs	Aquino et al. (2017b)
\$500-\$700		DNV GL (2016)
\$468		Selmon & Wynne (2017)
\$435-584	PNNL calculations – increased energy cost by 10% to account for lower DoD than the 80% DoD used for the calculations. Increased cost by 15% to account for container, DC controls, BMS.	Viswanathan et al. (2014), Crawford et al. (2015)
\$357-552	\$570-\$910 for installed cost. Removed PCS, grid integration and equipment tax, fees, and G&A costs.	Damato (2017)
\$676	Volterion stack costs including control units was 800 Euros/kW. Conversion to US dollars and using stack costs as 35% of DC system cost.	Seipp (2018)
\$488	Volterion mid-term stack costs – mid-term was not specified, it may be assumed to be 2021.	Seipp (2018)
\$293	Based on stack cost of \$250/kW, a 69% reduction due to R&D.	Seipp (2018)

Table 4.16. Capital costs for redox flow batteries.

lonomers

Composition and Functionalization (Processing)

Cycles (#)

Energy Storage Redox Flow Battery

Thank You Questions & Discussion

Before everything else, "Getting Ready" is the secret of success. *Henry Ford*

An Integrated Approach to Improved Wind Forecasting in Nebraska

Stonie Cooper, Mesonet Manager Nebraska State Climate Office School of Natural Resources University of Nebraska - Lincoln

Wind Potential

- Nebraska lies in area of high wind energy potential.
- Wind can vary significantly over space and time.
- Accurate wind forecasts at turbine height are underutilized.

Goal and Objectives

GOAL

Provide a reliable and timely wind forecasting tool for use in energy production applications.

OBJECTIVES

- Incorporate Nebraska Mesonet data into weather forecasting model and document change in skill.
- Develop specialized wind forecast product for NPPD.

The Nebraska Mesonet

mesonet.unl.edu

Observations:

- Air temperature
- Humidity
- Wind speed, direction 9' (3m) and 30' (10m)
- Liquid precipitation
- Solar radiation
- Soil temperature 4" (10cm)
- Soil moisture and temperature at 2", 4", 8", 20" and 40" (5, 10, 20, 50, 100cm)
- Barometric pressure

All Mesonet stations assimilated into WRF model.

- $\checkmark\,$ WRF run every 3 hours out to 72 hours.
- \checkmark 22.4mile x 22.4mile (22.4miles = 36km) grid resolution (horizontal).
- ✓ 49 terrain-following levels (vertical) up to 12.4 miles (20 km).
- ✓ 3DVAR used to assimilate air temperature, wind, humidity, air pressure.
- ✓ 197feet (60m) altitude closest to wind turbine height.

Results: Wind speed comparison

- ✓ Regional model overestimates wind speed by 3.4 mph (1.5m/s).
- ✓ Bias improves with Mesonet assimilation to 1.3 mph (0.6m/s) overestimate.
- Best improvement with Mesonet assimilation seen in central, eastern Nebraska.

Results: Wind speed comparison

- The greatest benefit to locally generated numerical wind speed forecast with inclusion of Nebraska Mesonet data is at lower wind speeds, well below name-plated generation potential.
- Focus on local "MOS" model output statistics to take current NOAA generated numerical forecast and use near-historical generation profiles on a per-tower basis to enhance forecasts

Wind speed forecast at turbine level

Date/Time (CDT)

Wind power forecast at turbine level

Questions? An Integrated Approach to Improved Wind Forecasting in Nebraska

Stonie Cooper scooper6@unl.edu

Printable Solar Cells

Peter Dowben Department of Physics and Astronomy

Prof. Andrew Yost Prof. Ned Ianno Prof. Takashi Komesu Prof. Alex Sinitskii Prof. Xiao Zeng Prof. Wai-Ning Mei Ms. Thilini Ekanayaka Mr. Archit Dhingra Prof. Alexei Gruverman Prof. Tula Paudel

Silicon Solar Cell

It is cheap, it is reliable and it is the standard

Why look any farther ???

Low cost High Efficiency: Inkjet printing for Photovoltaic Windows

Low weight 500 g/m²

Semi Transparent

Shadow Absorption Flexible Substrates

Covering the Solar Spectrum

Nebraska

Lincoln[®]

Photovoltaics from Organics

Organics are in principle cheap, flexible, bendable, and amenable to a variety of high throughput production methods

Not just solar cells, but displays too

Motion Articles on Paper

Organic Photovoltaics are emerging and promising, with some problems...

Problems with Organic Photovoltaics

- Organic solar cells need to stable! They have to work for a long, long time and survive in harsh conditions.
 - solution: need additives to stabilize the organics
- They need to be made more efficient! Now efficiency is low (about 5%) or high (23%) but in materials not very stable. (high efficiency materials are the ones that degrade in sunlight)
 - solution: need additives to stabilize the organics these will be dipolar molecules, and graded multilayers could improve efficiency a lot
- The organic solar cells need to be scalable! Can the materials be manufactured cheaply on a large scale?
 - Solution: Deposition from solution

Organic Semiconductors and Conductors

D. Shi, Peter A. Dowben, O. M. Bakr, et al, "Exceptionally low trap-state density and long carrier diffusion in room-temperature grown MAPbBr₃ perovskite single-crystal wafers", *Science* **347** (2015) 519-522

"Modifiers"

Demonstration of Additives on PV Performance

Dipolar molecules produce an intrinsic electric field that enhances the electron-hole separation in the semiconductor. This is new science!

Rapid Prototyping of Materials Combinations

Rapid prototyping with inkjet printer technology sing a modified inkjet printer

Cheap and Flexible

Simple Mass Production

Where do Quantum Dot Solar Cells Rank?

UNIVERSITY OF

Best Research-Cell Efficiencies 52 Multijunction Cells (2-terminal, monolithic) **Thin-Film Technologies** See https://www.nrel.gov/pv/assets/pdfs/cell_efficiency_explanatory_notes.pdf (IMM, 302x) Soitec (4-J, 297x) LM = lattice matched CIGS (concentrator) for key to company/laboratory/organization acronyms & abbreviations. Boeing-48 ⊢ MM = metamorphic CIGS Spectrolab SolarJunc IMM = inverted, metamorphic O CdTe (LM, 364x) FhG-ISE/ Soitec (LM, 942x) 46.0% O Amorphous Si:H (stabilized) ▼ Three-junction (concentrator) Spectrolab | FhG-ISE (MM, 299x) (MM, 454x) SpireSemicon 44.4% 💙 44 Three-junction (non-concentrator) (MM, 406) **Emerging PV** Two-junction (concentrator) O Dye-sensitized cells Boeing-Spectrolab (MM,179x) Boeing-Spectrolal Two-junction (non-concentrator) (4-J. 327x) Perovskite cells (not stabilized) (MM, 240x) (4-J, 319x) Four-junction or more (concentrator) Organic cells (various types) Boeing-Spectrolab (5-J) SolarJunc NREL SolarJunc (IMM, 325.7x) (LM, 418x) 40 Four-junction or more (non-concentrator) NREL Organic tandem cells NREL 38.8% **□** 37.9% ▼ Inorganic cells (CZTSSe) Sharp (IMM) Single-Junction GaAs Quantum dot cells ▲ Single crystal Sharo (IMM 36 ⊢ (various types) NREL (38.1x) ▲ Concentrator 35.5% A FhG-ISE ▼ Thin-film crystal NREL/ REL (467x) NREL (MM) LG **Crystalline Si Cells** Spectro 32.8% NREL 32 ⊢ Single crystal (concentrator) IES-UPM (1026x) FhG-ISE (117x) Efficiency (%) Varian (216x) LG Single crystal (non-concentrator) Multicrystalline Radbou Varian FhG-ISE 🛕 Amonix Silicon heterostructures (HIT) (205x) 28 SunPower (96x (92x) Thin-film crystal Stanford 27.6% (140x)26.6% 26.1% SolarFro 24 23.3% First Solar OISCAS FhG-ISE FhG-ISE 22.9% 22.3% 22.1% 21.2% (T.J. Watson Δ UNSW / Research Center) UNSW (14x)Eurosolare 20 **Quantum Dots** NREL NREL NRFI NREL 16 NREL No. Carolina State U. Solarex UniSolar 4.0% Mitsuhish Mobi (aSi/ncSi/ncSi Sola Boeir 12 Matsushita 8 Solarme 11 of NREL / Konarka EPFL EPFL U.of Ma U. Linz Groningen Plextronics 🔏 U. Linz (ZnO/PbS-QD) 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

We are leaders

Inkjet Printing of Solar Cell Inks

Applicability: "Printable" Solar Cells

Rapid prototyping with inkjet printer technology

Perovskite Synthesis Inexpensive wet lab solution-phase synthesis of CsPbX₃ NCs

Inkjet Printing of NCs in solvent on substrates

Constructing Shapes using printed NCs

Again, how to test all the possible combinations to find the best combinations for the most successful photovoltaic ?

Developing Thin-Film Solar Cells from printed NCs

Efficiency is not every thing:

If you cover more surface area and generate more current at much lower cost, you win.

So a window you look through but is also a solar cell could be a BIG winner, even if not very efficient.

Top universities and researchers in perovskite solar cell research

In The News!

We are No. 2 in the world for novel materials in photovoltaic research Top 10 universities in methylammonium lead perovskite solar cell research, 2014 to 2017

By expected output in top 10 per cent of most highly cited research for topic. World average = 1

	Northwestern University		Na	orth)WE	este	rn			
	,			<i>J</i> 1 (1			,,,,			
	Pohang		K	ore	sa					
	Science and Technology									
	University of Cambridge		Ca	mh	rid	ae				
			vu		ΠQ	yv				
	University of									
	University of Bath									
	King Abdullah University of		k	Kau	Ist					
	Science and Technology									
	King_ Abdulaziz									
	University									
	University of California,			JCL	_A					
	Los Angeles									
(University of		Ne	bra	ask	a				\sum
	University of Oxford		()xf	ord					
	c	0	2		Ever	4	tindex	6	8	
					expe	cied outpu	nuex			

Nebraska Public Power District

This work was supported by the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln

