

Operation and Planning of the Electric Grid During Turbulent Times

Casey Cathey, P.E.

Manager, Operations Engineering Analysis & Support

Section 1 Current Wind Situation

U.S. Wind Power Capacity, by State

American Wind Energy Association | U.S. Wind Industry First Quarter 2016 Market Report | AWEA Public Version

U.S Potential Wind Capacity in Megawatts (MW) at 80 Meters

Total Potential Wind Capacity: 10,640,080 MW

Source: AWS Truepower, NREL

Current MWs By Fuel Type

• Wind Totals 15728 MWs

- NDVER 6430 MWs
- DVER 9298 MWs
- Solar 215 MWs
- Nuclear 2636 MWs
- Natural Gas 36594 MWs
- Coal 27318 MWs
 - Generic Coal 20675 MWs
 - Lignite Coal 3006 MWs
 - Subbituminous 3637 MWs
- Hydro 3425 MWs

• Other Fuel Types (Oil, Agricultural Byproducts, Municipal Solid Waste) 1719 MWs

Wind Capacity Installed by Year

6

• **SPP** 75

Overcoming operational challenges with wind generation

- Thermal congestion
- Voltage stability
- Transient stability
- Ramping and Regulation
- Frequency response
- Capacity management

SPP Wind Records

- 49.17% Wind serving load April 2016
- 10,989MW Wind output April 2016

2015 Wind Integration Study (WIS)

• 60% Wind Penetration Wind Output and Siting.

2015 Wind Integration Study results

- The Steady-state thermal and voltage analysis <u>confirms the need</u> for approved ITP projects
 - Additional transmission needs beyond what was approved in the ITP process was discovered
 - Some approved ITP projects should be expedited and placed in-service sooner than the projects scheduled in-service date
- The Voltage stability analysis shows that renewable penetration levels are <u>approaching current limits</u>
- All N-1 constraints were resolved, albeit with substantial curtailments
- Ramping analysis indicates that in general, SPP has enough ramping capability to sustain 60% penetration

WIS - Voltage Stability Analysis The Spring operations model

How does WIS redispatch analysis compare to actual observations from Integrated Marketplace?

Average Wind Curtailments vs Unconstrained (Potential) Wind Penetration

Where does our wind power go?

*Data from 2015 Integrated Marketplace RTBM

Section 2 WIS Analysis

Assumptions

•Models

- Steady State power flow
- Operations & System Intact
- •Wind penetration 30%, 45%, 60%
- 2016 Spring & Fall peak load

Model parameters

- Lock switchable reactive devices (cap banks, reactors)
- Enable voltage controlling autotransformer taps
- Enable Static VAR Compensator (SVC) and continuous switch shunts
- Load is constant

Power Transfer

- Increase Wind Generation
 - From 30% to 45% penetration
 - From 45% to 60% penetration
 - From 60% to maximum power or voltage collapse
- •Decrease Large Thermal Generation
 - •Ignore real power minimum limits
 - Honor reactive power (MVAR) limits
 - Provides reactive support at 0 MW

imum		Transfer Start (MW)			
collapse	Renewable Penetration	Spring	Fall		
hermal Generation		7,168	7,219		
• • •	45%	10,756	10,828		
mınımum lir	nits _{60%}	14,334	14,438		
ver (MVAR) limits					

Power Transfer

(cont.) •Transfer to Voltage Collapse

- Normal conditions (N-0)
- 100 MW increments
- Report 5 most limiting contingencies

•Single 345 kV line or autotransformer

outage (N-1)

Event	Contingency	Voltage (kV)
1	Northwest to Tatonga	345
2	Holcomb to Buckner	345
3	Mingo to Setab	345
4	Mingo to Red Willow	345
5	Waverly to LaCygne	345

Sensitivity - Dynamic Reactive Source

•Static VAR Compensator (SVC)

- Used for modeling purposes to measure reactive needs
- Supplies reactive power while maintaining set voltage (1.0 PU)
- Locations
 - •Washita, Spearville, Thistle, Tatonga, Smokey Hills
- Other considerations
- Reliability

Section 3 WIS Results

Operations model – Spring

SVC² locations are Washita, Spearville, Thistle, Tatonga. SVC³ locations are Washita, Spearville, Thistle, Tatonga, Smokey Hills.

- 1 Turn on and scale Spring 45% wind generation not in Spring 30% model.
- 2 Turn on and scale Spring 60% wind generation not in Spring 45% model.

Operations model – Spring (N-0)

Spring 45% plus 1,000 MW renewable generation - Voltage Contour.

Planning model – Spring (N-0)

SVC¹ locations are Washita, Spearville, Thistle.

- 1 Turn on and scale Spring 45% wind generation not in Spring 30% model.
- 2 Turn on and scale Spring 60% wind generation not in Spring 45% model.

Planning model – Spring (N-0)

Spring System Intact 45% Penetration plus 2,400 MW - Voltage Contour.

Operations model – Fall (N-0)

SVC¹ locations are Washita, Spearville, Thistle.

[1] Turn on and scale Spring 45% wind generation not in Spring 30% model.

[2] Turn on and scale Spring 60% wind generation not in Spring 45% model.

Planning model – Fall (N-0)

SVC¹ locations are Washita, Spearville, Thistle.

[1] Turn on and scale Spring 45% wind generation not in Spring 30% model.

[2] Turn on and scale Spring 60% wind generation not in Spring 45% model.

Event 1: Transfer Levels to Voltage Collapse

SVC¹ locations are Washita, Spearville, Thistle.

 SVC^2 locations are Washita, Spearville, Thistle, Tatonga.

SVC³ locations are Washita, Spearville, Thistle, Tatonga, Smokey Hills. (VC) Voltage Collapse.

- 1 Turn on and scale Spring 45% wind generation not in Spring 30% model.
- 2 Turn on and scale Spring 60% wind generation not in Spring 45% model.

Event 1: Operation Model Transfer to Voltage Collapse

Event 1: Planning Model Transfer to Voltage Collapse

Spring System Intact 45% Penetration Event 1 plus 500 MW - Voltage Contour.

Dynamic Reactive Reserve (MVAR) - Spring

Model Type	Season & Renewable Penetration	Renewable Start (MW)	Renewable Stop (MW)	Delta Transfer (MW)	_{DRR} [1] (MVAR)	SVC (MVAR)	Source (MVAR)	Sink (MVAR)	State
Operation Outages	Spring 30%	7,100	10,700	3,600	446	0	278	168	Stable
Operation Outages	Spring 45%	10,700	11,700	1,000	1,148	0	514	634	VC
Operation Outages	Spring 45% + (SVC2)	10,700	14,300	3,600	3,239	2,000	380	858	Stable
Operation Outages	Spring 60% + (SVC2)	14,300	15,200	900	2,365	2,000	37	328	VC
Operation Outages	Spring 60% + (SVC3)	14,300	15,400	1,100	3,046	2,100	620	325	Stable
Planning	Spring 30%	7,100	10,700	3,600	277	0	213	64	Stable
Planning	Spring 45%	10,700	13,100	2,400	1,722	0	692	1,030	VC
Planning	Spring 45% + (SVC1)	10,700	14,300	3,600	2,780	1,300	536	944	Stable
Planning	Spring 60% + (SVC1)	14,300	15,400	1,100	2,039	1,400	449	190	Stable

Dynamic Reactive Reserve (MVAR) - Fall

Model Type	Season & Renewable Penetration	Renewable Start (MW)	Renewable Stop (MW)	Delta Transfer (MW)	_{DRR} [1] (MVAR)	SVC (MVAR)	Source (MVAR)	Sink (MVAR)	State
Operation Outages	Fall 30%	7,200	10,800	3,600	287	0	260	27	Stable
Operation Outages	Fall 45%	10,800	13,000	2,200	934	0	-102	1,035	VC
Operation Outages	Fall 45% + (SVC1)	10,800	14,400	3,600	2,361	1,700	-240	900	Stable
Operation Outages	Fall 60% + (SVC1)	14,400	15,400	1,000	2,141	1,500	455	186	Stable
Planning	Fall 30%	7,200	10,800	3,600	257	0	232	25	Stable
Planning	Fall 45%	10,800	13,100	2,300	922	0	-115	1,037	VC
Planning	Fall 45% + (SVC1)	10,800	14,400	3,600	1,976	1,400	-23	599	Stable
Planning	Fall 60% + (SVC1)	14,400	15,400	1,000	1,976	1,500	319	157	Stable

Renewable generation real power (MW) limits

Model	% Reserve	Operations (N-0)	Operations (N-1)	System Intact (N-0)	System Intact (N-1)
Spring	0	11,700	10,700	13,100	11,200
Spring	5	11,100	10,100	12,400	10,600
Fall	0	13,000	10,900	13,100	10,900
Fall	5	12,300	10,300	12,400	10,300

Section 4 Preliminary 2017 Variable generation Integration Study (VIS) Results

Power Tech Labs/SPP Load pocket critical generator outages

Area	Load Inc. MW	
Area 1 - East Nebraska	"NEBCTY2G 23.0" Pgen= 497.6MW	1220
Area 2 - SouthOK	"ARBWND11 34.5" Pgen= 79.4MW	640
Area 3 - SPS South	"HOBBS_PLT3 118.0" Pgen= 199.4MW	420
Area 4 - Woodward	"SLEEPING 138." Pgen= 73.9MW	760
Area 5 - Wichita	"WCGS U1 25.0" Pgen= 1189.6MW	240
Area 6 - KansasCityMetro	"IAT G2 1 25.0" Pgen= 900.0MW	580
Area 7 - Oklahoma City	"KNGFSR12 34.5" Pgen= 158.7MW	1080
Area 8 - Williston	"LINDAHLWNDGW0.69" Pgen= 34.9MW	840

Power Tech Labs/SPP Load pocket critical transmission outages

Area	Critical Contingency	Load Inc. MW
Area 1 - East Nebraska	"TATONGA7345." to "MATHWSN7 345."	300
Area 2 - SouthOK	"TATONGA7345." to "MATHWSN7 345."	60
Area 3 - SPS South	"SUNDOWN 6230." to "AMOCO_SS 6230."	400
Area 4 - Woodward	"O.K.U7 345." to "L.E.S7 345."	700
Area 5 - Wichita	"TATONGA7345." to "MATHWSN7 345."	260
Area 6 - KansasCityMetro	"TATONGA7345." to "MATHWSN7 345."	300
Area 7 - Oklahoma City	"TATONGA7345." to "MATHWSN7 345."	100
Area 8 - Williston	"BELDEN -MW7115." to "RBNSNLAK-MW7115."	180

Pre-contingency base case

Post-contingency
<u>base case</u>
Tatonga-Matthewso
n

Post-contingency
<u>limiting point</u>
Tatonga-Matthewson

East Nebraska Load Pocket

Post-contingency
<u>base case</u>
Wolf Creek
outage

Post-contingency
<u>limiting point</u>
Wolf Creek outage

Wichita load pocket

Post-contingency
<u>limiting point</u>
Hobbs 3 gen.
outage

SPS South load pocket

